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As the capabilities and implementation of multiple Unmanned Aerial Systems (UAS) oper-
ations increase, the need to develop reliable, verifiable, and high-performing vehicle control
algorithms arises. There are several methods for achieving near optimal navigation control
in multiple UAS scenarios. However, many approaches have difficulty identifying boundaries
in the state-space where discontinuities in the control signal exist. Neural Networks (NNs)
have been shown to be universal approximators of these decision boundaries and can therefore
classify the space into discrete regions with differing lower level actions. In this study, a control
system for a one-on-one UAS Tail-Chase scenario is developed. An NN was used to define a
decision boundary for discrete selection of two different Fuzzy Inference Systems (FISs) for
navigation and avoidance control. The parameters for both the NN and FISs are found using
a Genetic Algorithm (GA) inside a custom simulation environment. After initial training, un-
certainty was included in vehicle movements to improve generalization. The simulation results
show that the system was successful in all test cases after adding uncertainty and demonstrate
the efficacy of this approach.

I. Nomenclature

µ = membership value
ρ = turn rate noise
τ = simulation termination time
ψ = heading of vehicle
Ûψ = turn rate of vehicle
c = input membership function center points
d = distance
e = error
E = scaled error
g = gravitational acceleration
h = Neural Network intermediate output (post-activation)
J = cost function value
k = scaling constant
n = number of simulation runs
N = load factor
R = turn radius
s = Neural Network layer aggregate
t = simulation time
u = control output
U = output membership function center points
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v = UAS speed
w = Neural Network weights
x = Cartesian x location
Ûx = speed of vehicle along Cartesian x direction
X = Neural Network input vector
y = Cartesian y location
Ûy = speed of vehicle along Cartesian y direction
ŷ = raw Neural Network output
ȳ = piecewise decision boundary of Neural Network output

Subscripts

avoid = avoidance mode
C = collision
i = simulation run index
I = intersection point
j = UAS index
l = Neural Network layer index
M = margin
nav = navigation mode
P = pursuit vehicle
PR = penalty region
RA = relative angle
RH = relative heading
RR = reward region
T = target vehicle

II. Introduction

As cooperative multiple Unmanned Aerial Systems (UAS) operations become more realizable, there is a need to
develop reliable, verifiable, and high-performing algorithms for multiple vehicle control. One particular problem

of interest is a Tail-Chase scenario, where one or more vehicles try to reach a desired state relative to another. For
example, leader-follower swarming behavior can utilize this to allow flight formations. There are several solutions for
Tail-Chase vehicle control in low number scenarios, such as one-on-one, two-on-one, or even one-on-multiple [1–3].
The main difficulty when solving these types of problems is finding the boundaries in the state-space where switching
actions lie. For the application of a Tail-Chase scenario, the UAS controller must continuously decide the direction and
magnitude to turn to reach a desired region relative to the other vehicle. One way to partition the space effectively is to
use classification methods as a supervisory, outer loop control. The classes then determine which inner loop control
system to enact. Neural Networks (NNs) have been shown to be both universal approximators and to be able to perform
highly nonlinear classification with one or more hidden layers and nonlinear activation functions [4, 5].

There are also systems that can be used effectively as both inner and outer loop control, at the cost of complexity.
These systems are able to approximate a continuous function to any arbitrary degree of accuracy [6–8]. However, these
systems have less transparency than a hierarchical system that uses supervisory decision-making. In addition, they may
have difficulties approximating discontinuities efficiently. As there have been recent efforts to formally verify NNs
[9–11], the solution presented in this paper could be promising for complex UAS scenarios where high confidence in
correct behavior is required. Additionally, as we know that discontinuities likely exist in the optimal control function, it
may be more computationally efficient to have a supervisory logic that defines these boundaries (explicitly or implicitly)
and subsequently use a continuous universal approximator on the compact set defined therein.

Developing an effective Tail-Chase controller is further complicated by the fact that the control algorithm is
contingent on the other vehicle’s behavior. For example, if two vehicles have the same Tail-Chase controller, neither
vehicle will succeed in reaching a desired region without a performance advantage; i.e., vehicles with the exact same
performance (speed, load factor, etc.) will not be able to close the distance to an arbitrary desired region. Additionally,
one potential way to make a controller more robust to unknown behaviors is to introduce uncertainty into the target
vehicle’s movement. This prevents overfitting a solution to particular conditions and therefore improves confidence in
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the system’s ability to generalize.
This paper proposes a solution that has several advantages over other approaches. First, the ability to identify

decision boundaries implicitly in the input space avoids the need to define them a priori as would need to be done for
an analytical solution. Secondly, the scenario can be modified to include any arbitrary desired penalty and reward
regions relative to another vehicle. This allows the accommodation of much more complex systems and behaviors while
retaining tractability. Lastly, this closed-loop control method is robust to unknown behaviors in the target UAS. The
solution continuously reacts to current state information and is trained to account for a certain level of state uncertainty.
The benefit of utilizing uncertainty during training is that it allows for a smaller set of training cases while improving
the ability to generalize over the state-space.

In Section III the specific problem being addressed is described. This is followed by a detailed explanation of
the methodology of the proposed solution in Section IV. In Section V the results of the study are presented. Lastly,
conclusions and future opportunities for expanding on this work are presented in Section VI.

III. Problem Description
The problem being considered is a one-versus-one Tail-Chase scenario where one UAS, the pursuer, is attempting

to reach a Reward Region (RR) relative to another UAS, the target, while avoiding a Penalty Region (PR). The PR and
RR are defined by ranges of the relative states of the two vehicles. The relatives states considered are the distance, d, the
relative angle, ψRAP , and the relative heading, ψRHP . The relative states d, ψRAp , and ψRHp are defined in Eqs. (8),
(9), and (10), respectively. Specifically, RR = {R|d ≤ 50, − π6 ≤ ψRAP ≤

π
6 , −

π
6 ≤ ψRHP ≤

π
6 }. The PR is relative to

the target vehicle such that PR = {R|d ≤ 50, − π6 ≤ ψRAT ≤
π
6 }. A visualization of this is shown in Fig. 1.

Fig. 1 Pursuer and Target UAS with Penalty and Reward Regions

The vehicles are constrained to 2-D level flight with constant speed and maximum turn rates, Ûψmax j . The values
were set such that the pursuer has an advantage in load factor and speed while keeping the same minimum turn radius,
Rmin. The maximum turn rates and minimum turn radii were calculated from Eqs. (1)-(2) with values of vP = 50m

s and
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vT = 20m
s for the pursuer and target, respectively. This turns the vehicles into Dubins vehicles [12] and the dynamic

model in global coordinates is given by Eqs. (3)-(5). These can then be integrated to obtain the global states, xj , yj , and
ψj at each time step.

Ûψmax j =
g

vj

√
Nj

2 − 1
, j = P,T (1)

Rmin =
vj
Ûψmax j

(2)

Ûxj = vjcos(ψj) (3)

Ûyj = vj sin(ψj) (4)

Ûψj = u j , u j ∈
[
− Ûψmax j , Ûψmax j

]
(5)

In order to develop a controller with fewer required states, the relative states of the vehicles, d, ψRH , and ψRA, are
calculated from the global states. These are shown in Eqs. (6)-(10).

exP = xT − xP (6)

eyP = yT − yP (7)

d =
√

e2
xP + e2

yP (8)

ψRAP = tan−1
(

eyP
exP

)
(9)

ψRHP = ψT − ψP (10)

ψRHP and ψRAP are then corrected such that ψRHP , ψRAP ∈ {R| − π ≤ ψRHP , ψRAP ≤ π}. This information shall
be used to direct the pursuer to the RR without entering into the PR. To achieve this goal, a controller must use the
relative state information to determine the appropriate corresponding turn rate.

IV. Proposed Solution
The proposed solution to this problem is to use a Neural Network to partition the state-space into discrete regions.

Inside these regions, either a navigation controller or an avoidance controller will be employed to control the path of the
vehicle. These two controllers direct the pursuer to either steer towards or away from the target. The controller for
navigating towards the target is shown in Eq. (11).

ÛψnavP = ÛψmaxP sgn(ψRAP ) (11)

The avoidance controller is more complicated due to needing more information about the relative states of the two
UAS and the possible modes for steering away. This controller and its corresponding logic is detailed in Section IV.A.
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A. Avoidance
The avoidance controller was developed with inspiration from the methods used in Ref. [13, 14]. It uses a similar

logic based on the intersection point of the UAS. The intersection point is defined as the point of intersection of the
projected current headings between the two UAS.

The distance to the intersection point, dIj , is then calculated by Eq. (12)-(14). A visualization of the intersection
point (xI, yI ) and the distances dIP and dIT are shown in Figure 2.

Fig. 2 Intersection point and distances from UAS

This distance is used to determine if the pursuit UAS should go in front of or behind the target UAS using the
relationships shown in Eq. (15). An intersection distance margin, denoted dM , is used in order to decide if there is
sufficient distance to safely go in front of the target UAS.

xI =
yP − yT − xP tan (ψP) + xT tan (ψT )

tan (ψT ) − tan (ψP)
(12)

yI =
yP tan (ψT ) − yT tan (ψP) + (xT − xP) tan (ψP) tan (ψT )

tan (ψT ) − tan (ψP)
(13)

dIj =

√
(xI − xj)2 + (yI − yj)2 (14)

f ront =

{
1 if (dIP + dM ) < dIT

0 otherwise
(15)

After the UAS decides if it should go in front, it then selects an appropriate Fuzzy Logic Controller (FLC) that
determines the actual continuous output, Ûψ. Note that FLCs are simply Fuzzy Inference Systems (FISs) that are
specifically applied to control problems. The FLCs each utilize triangular membership functions, Ruspini partitioning,
input normalization, the product method for rule association, and weighted average defuzzification, as desribed in
Ref. [15]. This results in an output that is of the form shown in Eqs. (16)-(18). A general FLC structure and internal
processes is shown in Fig. 3. The input set, c, and output set, U , have the forms shown in Eq. (19) and (20), respectively.
(Note: a bold variable indicates it is a matrix of values.) Due to the properties of the FLCs in question, these sets
represent the center points of their triangular membership functions. The values of these parameters, as well as the
normalization and scaling gains, kin and kout , were found using the methods described in Section IV.C. Note that, due
to normalization, the values for c1 and c4 were set to −1 and 1, respectively.

ÛψavoidP = kout
3∑
i=1

µiUi (16)

µi =

ψRA

kin
− ci

ci+1 − ci
(17)

5



µi+1 =
ci+1 −

ψRA

kin

ci+1 − ci
(18)

c = [ c1 c2 c3 c4] (19)

U = [U1 U2 U3 U4] (20)

Fig. 3 FLC structure and internal processes

B. Neural Network
The constructed Neural Network is a fully-connected, feed-forward network with two hidden layers. NNs with

multiple hidden layers have been shown to be universal approximators for nonlinear classification decision boundaries
[16]. The hidden layers each contain five nodes, whereas the output layer has a single node. The activation functions
within the hidden layers are hyperbolic tangent functions and the final output layer uses the sigmoid activation function.
These functions are not typically used in deep-learning NN applications due to the problem of vanishing gradients.
However, in this work a type of evolutionary reinforcement learning is used, and is therefore derivative-free. One benefit
of using these atypical activation functions (such as a Rectified Linear Unit (ReLU) function) is that there have been
recent efforts to formally verify NNs with ReLU activation [9]. This could help increase the confidence that the system
would behave as intended over the entire input domain.

The inputs to the NN are d, ψRH , and ψRA. These inputs as well as a bias value are combined into vector form,
denoted X . The output, ŷ, is converted into a binary value, ȳ, by thresholding the output at 0.5. This allows the inputs
to be separated into the two classes: avoidance and navigation. If the inputs are classified as avoidance, the avoidance
subcontroller is activated, otherwise, the navigation controller is activated. The operations that occur within the NN,
along with the activation in each layer, are shown in Eq. (21)-(24). (Note: s3 is a scalar due to having a single output in
the last neural network layer.) A visual representation of the NN architecture and pursuer logic with FLCs are shown in
Fig. 4 and Fig. 5, respectively. Note that the bias is not depicted in Fig. 4.

sl =

{
wl

TX if l = 1
wl

T hl−1 if l = 2, 3
(21)

hl = tanh (sl ) , l = 1, 2 (22)

ŷ =
1

1 + e−s3
(23)

ȳ =

{
avoidance if ŷ > 0.5
navigation otherwise

(24)
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Fig. 4 Hybrid NN and FIS structure for supervisory control

Fig. 5 Avoidance logic structure

Now that the structure of the control system has been created, the various parameters need to be found.

C. Learning Control Parameters
In order to learn the parameters of this system, a Genetic Algorithm (GA) was utilized. This method was chosen

because the optimal control is unknown and therefore actual error data are not available for supervised learning methods.
Thus, a derivative-free search method with a critic, or cost, function is needed. The parameters to be learned are
the membership function center points c and U , the gains for the FLCs kin and kout , and the NN weights wl . This
constitutes an individual in the population that is being optimized by the GA. Better performing (i.e. lower cost)
individuals are selected for mutation and recombination in order to iteratively refine the population towards a global
optimum. The actual GA used was the default algorithm included in the Global Optimization Toolbox from Mathworks
[17].

To facilitate this, a simulation environment was created based on the vehicle properties described in Section III. The
control system structure was defined and tested over a number of initial conditions. These conditions were such that the
target vehicle started at fifty different values of ψRAP in [−π, π], two different values for ψP at (0, π), and an initial
separation of 375 m. This gives one hundred trials of initial condition values for a single test run. Since the dynamics of
the vehicle are functions of Ûψ (either directly or through coupling), these initial conditions were deemed sufficient for
covering the state-space.

A cost function is needed to assign a performance metric value to a particular test run. In terms of a GA, this is the
fitness value for a particular individual in the population. The only difference here is that the value is being minimized,
so it is conventionally labeled as a cost. The cost function is shown in Eqs. (25)-(29). The value used for the collision
distance, dC , was 10 meters.

J =
1
n

n∑
i=1

τi∑
t=0

(
Exi (t)

2 + Eyi (t)
2
)
+ 100000 kCi (25)

Exi (t) = kPR(t)exi (t) (26)
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Eyi (t) = kPR(t)eyi (t) (27)

kPR(t) =

{
1000 if in PR
1 otherwise

(28)

kCi =

{
1 if d < dC
0 otherwise

(29)

This cost function therefore penalizes the pursuer for each time step that it exists within the PR. Although there
is no explicit term that rewards it for reaching the RR, this happens implicitly by stopping the simulation once it is
reached. Once the simulation terminates, the error terms in Eqs. (26)-(27) will no longer be accumulating. This is
related to the path length, and therefore the final time, due to having a constant speed. Note that the simulation does have
a maximum time limit which will terminate that trial if reached. The final term in Eq. (25) is a penalty for collisions. If
there is a collision then the pursuer is assigned an extremely heavy penalty. This value is arbitrary, but was selected
after empirical examination of early runs of the optimization algorithm. The value chosen was deemed sufficient to
dominate the cost if a collision were to occur. An occurrence of a collision also constitutes a terminating condition for
the simulation. Overall, this cost function describes a controller that drives the pursuer to get to the RR as quickly as
possible while avoiding the PR and collisions. The cost function value is stored for each trial in a particular test run and
then averaged to get the final cost for that particular individual in the population.

D. Uncertainty in Target Vehicle Movement
One concern with learning models numerically is overfitting to the training data. Additionally, although the training

data may offer relatively dense coverage of the state-space, the cost function may also inadvertently drive the system
towards overfitting. To help combat this, uncertainty was added to the system in the form of noise to the target vehicle’s
input. Initially, the system was tested in a scenario where the target vehicle’s input, uT , was set to be zero (i.e. it flies
along a straight path). This ensured that the problem could be solved for a more simplified scenario. To help improve
the robustness of the developed system, uncertainty was then added to the target’s turn rate. This helped ensure better
generalization in the learned model by accounting for possible states the vehicle can reach. This was achieved by
augmenting Eq. (5) with a noise term, ρ, as shown in Eq. (30).

ÛψT = uT + ρ (30)

The noise was added by sampling a truncated normal distribution, as described in Ref. [18], with zero mean and
truncation points at ± ÛψmaxT . The standard deviation of the distribution was chosen to be

ÛψmaxT

3 . While this was used
throughout the scope of this study, there are potential benefits to testing the system with larger standard deviation values.
For example, an increased standard deviation would force the controller to be more conservative due to an increased
probability of higher turn rates.

V. Results
The methodology described in Section IV was implemented for a number of additional test cases. An example of

the cost from Eq. (25) during the learning portion of the development is shown in Fig. 6. As the GA modified the
parameters of the system, it can be seen that the mean fitness value decreased. This shows the search honing in on
more fit individuals as higher cost solutions are removed. The final values found for all weights, gains, and membership
functions are not displayed, but can be provided by the authors upon request.
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Fig. 6 Average and best individual cost vs. generation during GA learning

Figure 7 shows the performance of the system, with no turn rate uncertainty, found through learning. The same
initial conditions, as described in Section IV.C, are shown. It can be seen that in all cases, the pursuer successfully
reaches the RR and avoids the PR. To further validate the system performance and generalization capabilities, many
more initial conditions were tested that were not seen during training. By increasing the number of trials tested, the
performance of the system with a higher granularity with respect to the state-space can be examined. A total of 10,000
trials were run with varying initial relative positions and headings between the target and pursuer. It was discovered that
there were collisions in 1.48% of these cases. These collisions occurred in a few concentrated ranges of initial relative
angles: {R| − 179° ≤ ψRAP ≤ −172°,−143° ≤ ψRAP ≤ −137°, 171° ≤ ψRAP ≤ 179°}. These collisions could be due
to the NN selecting the wrong subcontroller, the FLC subcontrollers learning incorrect behaviors, or some combination
of both. To further improve the performance of the controller, additional training could be performed in order to expand
coverage of the input space. Outside of the collision cases, the pursuer always successfully reached the RR.
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Fig. 7 Simulation results for a test run of the best individual found during learning (no uncertainty)

Once the system had been trained for the case with no uncertainty, uncertainty was added to the target UAS’s
turn rate, as described by Eq. (30). The same parameters were then again trained using a GA. For this second round
of training, the final solution from the no uncertainty case served as an individual in the initial population for the
uncertainty case.

Figure 8 shows the system performance after being trained with uncertainty in the target UAS’s turn rate. Note that
although the system was trained such that the target UAS was performing a random walk, in order to compare these
results to those shown in Fig. 7, the same test cases were used. That is, there is no uncertainty in the target’s turn rate in
the test cases shown. It can be seen from the results that the system is still able to reach the RR in all trials tested. The
same 10,000 trials were also evaluated as in the no uncertainty case. No collisions occurred in these testing instances.
Thus, the additional training with uncertainty in the target’s turn rate lead to a more robust control system.
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Fig. 8 Simulation results for a test run of the best individual found during learning (with uncertainty)

VI. Conclusion
In conclusion, a method was presented for obtaining near optimal solutions to a one-versus-one Tail-Chase UAS

scenario by combining an NN supervisor with lower level FLC control. A GA was utilized in order to learn the
parameters of both the FLCs and the NN with no precise knowledge about the target UAS or its PR. The methodology
could be extended for any arbitrary one-versus-one Tail-Chase scenario by adjusting the RR, PR, and cost function.
Overall, this represents a novel method for finding discontinuities in a complex input space and then enacting appropriate
low-level continuous control. One possible application for this type of control includes leader-follower formation control
in swarming agent systems.

This approach could potentially be scaled up for one-on-multiple or even multiple-on-multiple UAS scenarios. This
would require other supervisory and complementary functions in order to provide target assignments to the pursuing
vehicles. Also, to improve scalability, another function is needed to ignore potential target vehicles outside of a sphere
of influence. This could also be written into the target assignment protocol. Additionally, the cost function would need
to be modified in order to account for multiple penalty regions.

To improve the confidence in correctness, the Neural Network could use other activation functions that are more
amenable towards formal verification, such as ReLU. Being able to definitively show that there are no collision cases
and the pursuer always reaches the reward region, regardless of state value, is invaluable for ensuring system correctness
and effectiveness. The approach could also be extended by considering other inner loop control methods for different
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scenarios. Furthermore, in cases where the inner loop control reduces to a multiple classification problem (discrete
control), the NN output could instead be used directly for control using a Softmax function. Lastly, in an effort to
validate the algorithms and methods presented within, the algorithms could be tested on actual flight systems. These
flight systems would be small, fixed-wing RC aircraft controlled by sending waypoint updates from a ground station.
The test results would then be collected, examined, and compared with the simulation results.
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